Plasma wave mediated attractive potentials: a prerequisite for electron compound formation

نویسندگان

  • R. A. Treumann
  • W. Baumjohann
چکیده

Coagulation of electrons to form macro-electrons or compounds in high temperature plasma is not generally expected to occur. Here we investigate, based on earlier work, the possibility for such electron compound formation (non-quantum “pairing”) mediated in the presence of various kinds of plasma waves via the generation of attractive electrostatic potentials, the necessary condition for coagulation. We confirm the possibility of production of attractive potential forces in ionand electron-acoustic waves, pointing out the importance of the former and expected consequences. While electron-acoustic waves presumably do not play any role, ion-acoustic waves may potentially contribute to formation of heavy electron compounds. Lower-hybrid waves also mediate compound formation but under different conditions. Buneman modes which evolve from strong currents may also potentially cause non-quantum “pairing” among cavity-/hole-trapped electrons constituting a heavy electron component that populates electron holes. The number densities are, however, expected to be very small and thus not viable for justification of macro-particles. All these processes are found to potentially generate cold compound populations. If such electron compounds are produced by the attractive forces, the forces provide a mechanism of cooling a small group of resonant electrons, loosely spoken, corresponding to classical condensation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma

We have studied the formation of relativistic solitary waves due to nonlinearinteraction of strong electromagnetic wave with the plasma wave. Here, our plasma isrelativistic both in temperature and in streaming speed. A set of equations consisting ofscalar and vector potentials together with a third order equation for the enthalpy inphoton gas plasma is obtained analytic...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

Plasma Wave Acceleration of Electron in Bubble Regime in Presence of a Planar Wiggler

The plasma wave acceleration of electron in the bubble regime is investigated in a new configuration containing a planar wiggler. The space-charge field of the laser-created ion channel can focuse and stabilize the electron trajectory to guide it toward the acceleration region. The high-gradient plasma wave field can resonantly accelerate the trapped electron to higher energies in the presence ...

متن کامل

STUDY ON CORROSION PROPERTIES OF PLASMA NITRIDED PURE ALUMINIUM

Abstract: In this research plasma nitriding of pure aluminium and effect of iron elemental alloy on the formation and growth of aluminium nitride was investigated. Also corrosion properties of formed AlN were investigated. After preparation, the samples were plasma nitrided at 550oC, for 6, 9 and 12 h and a gas mixture of 25%H2-75%N2. The microstructure and phases analysis were investigated usi...

متن کامل

Implication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons

We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014